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ABSTRACT 

Water resource recovery facility modeling requires a robust and reliable characterization of the 
wastewater to be treated. Current wastewater characterization practice often involves a limited 
number of relatively short-duration but intensive campaigns, where few studies have been 
conducted over characterization representativeness. With the one-year detailed wastewater 
characterization campaign conducted weekly in the Great Lakes Water Authority (GLWA) 
Water Resource Recovery Facility (WRRF) and a simplified standard Activated Sludge Model 
Number 1 (ASM1) model, this paper provided an overview of fractionation variety throughout 
the whole year, evaluated consequences of different campaign strategies to identify reasonable 
sample size and campaign periods. Finally, it proposed an adaptive approach for wastewater 
characterization.  Results showed that characteristics of wastewater varies significantly 
throughout the year and a campaign size around 20 is suggested to ensure robustness. 
Characterization should be conducted during periods of normal and stable plant operation, which 
could be identified with suggested indicators.  

 

KEYWORDS  

Activated Sludge, Wastewater, Characterization, Models, Campaigns, Reliable, Robust 

 

 
3928

mailto:yangche@umich.edu
mailto:wendy.barrott@glwater.org
mailto:Andrea.Busch@glwater.org
mailto:mehrotraas@cdmsmith.com
mailto:MaddenJE@cdmsmith.com
mailto:gdaigger@umich.edu


INTRODUCTION & BACKGROUND 

Process modeling based on the International Water Association (IWA) Activated Sludge Models 
(ASM’s) has become the standard technique for the design of Water Resource Recovery 
Facilities (WRRF’s)(Hauduc et al. 2013; Phillips et al. 2009; Henze et al. 2000). These models 
depend on a detailed characterization of the influent wastewater which goes beyond the general 
simple lumped parameters, such as total five-day biochemical oxygen demand (BOD5) and 
chemical oxygen demand (COD) typically collected for plant operation. Robust and valid 
characterization is essential for process modeling, as inaccurate wastewater composition inputs 
can lead to significant modeling error(Rieger 2012). The profound effect of wastewater 
characterization on modeling outputs has been demonstrated many times(Choubert et al. 2013; 
Petersen et al. 2002; Phillips et al. 2009), and include:  

• Sludge production is influenced by the estimated inert particulate COD. 
• Oxygen demand is influenced by the estimated total bio-degradable COD. 
• Anoxic denitrification rate and anaerobic phosphorus release are influenced by the 

estimated readily biodegradable COD. 
• Effluent COD is influenced by the estimated inert soluble COD. 

In practice, wastewater characterization is conducted mainly via two methods: (1) physical-
chemical and (2) respirometric. STOWA(Roeleveld and van Loosdrecht 2002) proposed simple 
and easy to implement guidelines based on physical-chemical methods. WERF(Melcer et al. 
2003) provided a state-of-the-art and frequently used method for measuring key influent 
wastewater characteristics and kinetic/stoichiometric parameters covering both methods. 
BIOMATH(Vanrolleghem et al. 2003) developed a protocol for activated sludge model 
calibration, with influent wastewater characterized by the respirometric method.  Recent attempts 
at integrated characterization suggested a combination of both methods (Lu, Zhang, and Zhang 
2010).  These various methods were compared by (Gillot and Choubert 2010) and Fall(Fall et al. 
2011), where significant gaps were found in results.  

Despite lack of agreement on the best characterization method, the choice should fit the purpose 
for which the model is being developed. Due to its time-consuming and labor-intensive nature, 
wastewater characterization is often conducted intensively within one or a limited number of 
short duration campaigns. While these data allow a simulation model to be set-up, concerns exist 
when the model is to be used to simulate future performance.  For example, “Are sufficient data 
collected to robustly characterize the wastewater on a long-term basis?” and “Do wastewater 
characteristics vary on a seasonal or more random basis?”. Non-representative wastewater 
characterizations can lead to significant cost implications when model results are used to make 
decisions on facility upgrades/expansions and operation. 

On-going work at the Great Lakes Water Authority (GLWA) Water Resource Recovery Facility 
(WRRF) in Southeast Michigan provided an opportunity to conduct detailed wastewater 
characterization over an annual cycle. Building on this long-term data set, an assessment of 
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variations in wastewater characteristics and impacts of different strategies for wastewater 
characterization campaigns was conducted.  

This paper evaluates alternative wastewater characterization campaign designs, mainly focusing 
on campaign size and timing. Following physical-chemical guidelines provided by 
WERF(Melcer et al. 2003), detailed wastewater fractionation and characterization was conducted 
every week for a one-year period. Characterization results were fed into a standard ASM1 model, 
and different practical campaign strategies were evaluated. Based on these investigations, 
suggestions about obtaining robust and reliable wastewater characterization estimates by 
campaign design are proposed. Bioreactor mixed liquor volatile suspended solids (MLVSS) 
concentration, which responds in a straightforward fashion to process operating conditions and 
the relative fractions of biodegradable and non-biodegradable particulate matter in the influent 
wastewater, was used as the modeled response variable, compared to actual daily values. GLWA 
uses the high purity oxygen (HPO) activated sludge process operated with an average 2.3-day 
solids resident time (SRT), making MLVSS concentration responsive to variations in wastewater 
characteristics. 

METHODOLOGY 

Description of the Plant 

The GLWA WRRF is a 3,560,000 m3/d (940 MGD) peak flow (secondary treatment) facility 
serving 3.1 million residents in Southeast Michigan. The liquid process treatment train consists 
of influent pumping and preliminary treatment (screening and grit removal), conventional 
primary treatment with ferric chloride addition for phosphorus removal, HPO activated sludge, 
and effluent disinfection. Flows above 3,560,000 m3/day and up to 4,500,000 m3/day, receive 
primary treatment with ferric chloride addition.  Secondary treatment requirements apply, along 
with seasonally varied monthly effluent total phosphorus (TP) limits of 0.7 mg-P/L (October to 
March) and 0.6 mg-P/L (April to September).  The plant routinely meets all discharge standards. 
Solids are thickened, dewatered, and either subject to drying or incineration and landfill. 

Wastewater Fractionation 

Flow-proportioned 24-hour composite samples are collected daily for influent wastewater, 
secondary influent (primary effluent) and secondary effluent by GLWA WRRF staff. There are 
actually three separate influent streams to the GLWA facility, and each is sampled separately. 
While a combined primary effluent stream is conveyed to secondary treatment, it passes through 
two different pumping stations to secondary treatment, and each secondary influent stream is 
sampled separately. Return activated sludge (RAS) is combined and conveyed to the HPO 
bioreactors, resulting in a “single” biological population, but two separate sets of secondary 
clarifiers exist and each set is sampled separately. Detailed wastewater fractionation was 
conducted weekly on all seven streams on samples collected on random weekdays over the 
period from October 19, 2017 to October 17, 2018. Wastewater fractionation generally followed 
the physical-chemical guidelines provided by WERF(Melcer et al. 2003) ,and consisted of 
stepwise filtration through the standard glass fiber filter (1.2 μm nominal pore size) and an 0.45 
μm membrane filter. Filtrate through the glass fiber filter (1.2 μm) was defined as the sum of 
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soluble and colloidal COD (SCCOD). Filtrate through the 0.45 μm membrane filter was defined 
as soluble COD (SCOD). The difference between these two filtrates was defined as colloidal 
COD (CCOD). Particulate COD (PCOD) was defined as the difference between the total COD 
and SCCOD. COD and BOD5 analyses were conducted by GLWA staff according to Standard 
Methods(American Public Health Association - APHA 2005). 

Flocculation and filtration (Mamais, Jenkins, and Prrr 1993; Roeleveld and van Loosdrecht 
2002)is more generally applied to determine the soluble fraction of wastewater. Previous 
work(Yan et al. 2018) had indicated that, for this wastewater, there was no significant difference 
for COD and BOD5 between 0.45 μm membrane filtrate and the results when flocculation and 
filtration per the WERF protocol. Note that ferric chloride is added prior to the primary clarifiers 
for phosphate removal, and this may function, to a certain extent, to achieve the flocculation of 
colloidal organic matter present in the influent wastewater. An independent wastewater 
characterization effort was conducted during this period in connection with an on-going master 
planning effort(Mehrotra 2018) which reached similar conclusions. In this study they performed 
six days of COD characterization at the GLWA WRRF following standard physical-chemical 
guidelines(American Public Health Association - APHA 2005) ,and these results generally 
support that use of simple membrane filtration, rather than the more complicated flocculation and 
filtration procedure, is reasonable to characterize soluble organic constituents for this 
wastewater.  Secondary influent (primary effluent) data were used in this study for modeling 
purposes. Not including flocculation and filtration of the samples collected from the several 
locations each week also facilitated the significant duration of the sampling program and became 
a practical consideration in proceeding with the characterization campaign. 

 

Mapping Measured Wastewater Fractions into Model Inputs 

Required IWA ASM inputs include readily biodegradable COD (Ss), slowly biodegradable COD 
(Xs), soluble inert COD (SI) and particulate inert COD (XI)(Henze et al. 2000), which were 
calculated as fractions of total COD. As discussed below, colloidal COD was found to be 
insignificant for this wastewater and, therefore, was incorporated into the particulate COD 
fraction. The soluble inert COD (SI) was determined directly as the measured second effluent 
membrane filtrated COD (SCODnb). The readily biodegradable COD (Ss or SCODbio) was 
calculated as the difference between the total soluble COD (SCOD) and SCODnb. The total 
biodegradable COD (SCODbio + PCODbio) was determined using the measured BOD5 following 
STOWA guidelines(Roeleveld and van Loosdrecht 2002) and using a biodegradable COD/BOD5 
ratio of 1.73 mg COD/mg BOD5. The slowly biodegradable COD (Xs or PCODbio) was 
determined as the difference between the total biodegradable COD and SCODbio. The final 
remaining COD (PCODnb) was then the particulate inert COD (XI). A manual reconciliation 
process, including mass balance check, specific ratio check, non-negativeness check etc.(Belia et 
al. 2009) was applied to the four wastewater component data, and records with apparent 
abnormalities were omitted. The reconciled COD concentrations were converted into fractions 
and then fed into the model.    
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Biological Process Modeling 

The HPO process was modeled in MATLAB® using a standard IWA ASM1(Henze et al. 
2000) ,modified as described below, with measured secondary influent total COD and fractions 
determined as above as input. Secondary influent was used in the model for two reasons.  One is 
that it represents the direct input to the secondary treatment process and, consequently, the 
impacts of upstream treatment on wastewater constituents need not be included in the model.  
Secondly, GLWA measures secondary influent total COD daily, so a several-year-database was 
available for extensive evaluation of model performance based on various approaches for 
analyzing the fractionation results, as described below.  Two long-term data sets were used for 
modeling and model evaluation.  Daily data for the period of October 19, 2017 to October 17, 
2018, corresponding to the year over which detailed wastewater fractionation occurred, were 
used as the model training set.  Daily data from October 18, 2013 to October 17, 2017 were used 
for model evaluation and verification.  

A simplified model based on a single completely-mixed bioreactor was used to compute the 
MLVSS, the response model variable which was compared to the measured MLVSS 
concentration. This simplified model facilitated process modeling and data analysis (around 50 
times reduction on run-time). A more complete model of the entire liquid treatment process had 
previously been developed in SUMO (Dynamita). Comparison of the results from the two 
models demonstrated that use of the simplified bioreactor configuration did not materially affect 
MLVSS predictions. Further details of the model used include:   

• Biochemical processes included growth, decay and hydrolysis. Because biomass 
prediction was the main objective of this study, only these highly biomass-related 
reactions were considered.    

• Heterotrophic biomass was used to estimate the overall biomass. As is typical for HPO 
processes used for secondary treatment due to the relatively low SRT (average= 2.3 days) 
and the reduced bioreactor pH due to the retention of CO2 in solution, nitrification does 
not occur in the full-scale system.  

• Since it is an HPO process, where oxygen is not limiting, oxygen limiting terms in 
reaction rate expressions were not included.  

• Standard stoichiometric and kinetic parameters and temperature correction factors from 
the literature(Alikhani et al. 2017; Grady et al.  2011; Hauduc et al. 2011) were used, as 
summarized in Table 1. 

Model Performance Evaluation 

Mean and standard deviation values were calculated for model predictions and actual MLVSS 
data, and the root mean square error (RMSE) between model predictions and actual MLVSS 
concentrations was calculated to evaluate model performance. Our evaluation focused 
particularly on instances where model predictions appeared to differ noticeably from measured 
values, as they suggested periods of lack of fit for the model. We defined two types of 
deviations, namely outliers and spikes. Outliers were defined by comparison of individual model 
predictions to individual actual values where the deviation exceeded +/- three standard deviation 
from the actual MLVSS (corresponding to a probability of occurrence 0.3 % based on the 
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assumption of a normal distribution). Spikes were defined by deviations exceeding +/- two 
standard deviation of actual MLVSS (corresponding to a probability of 4.6 %)(Taylor 1982). 

 

Table 2 Comparison of the Results from this Study for Wastewater COD fractions Compared 
to Literature Values 

Source 
Total    
COD 
mg/L 

COD Fraction in Percentage 

Ss SI Xs XI 
Biomass, 

XH 

Primary Effluent Characteristics   
This study * 159 ± 41 22 ± 9 15 ± 7 28 ± 13 35 ± 15 - 
(Fall et al. 2011) * 492 36 5 35 24 - 
(Siegrist et al. 1995) 1 250 10 8 58 24 - 
(Henze 1992)   29 3 43 11 14 

Raw Influent Characteristics   
This study * 280 ± 85 20 ± 10 9 ± 5 35 ± 15 36 ± 20 - 
(Mehrotra 2018) * 290 15 9 24 52 - 
(Lu et al. 2010)  540 8 - 10  1 - 4  27 - 40  14 - 36  23 - 46  
(Zhou et al. 2008)  176 - 220 19.5 -27.8 8.4 - 12.8 16.1 - 37.3 13.9 - 33.4 14.7 - 18.9 
(Roeleveld et al.  2002) * 241 - 827 9 - 42 3 - 10 10 - 48 23 - 50 - 
(Kappeler et al. 1992)  250 - 430 7 - 11 12 - 20 53 - 60  8 - 10 7 - 15 
(Henze 1992)  400 27 15 40 17 - 
*The fractions were measured and calculated purely with physical-chemical method   
1 The Siegrist’s fraction was calibrated estimations used in modeling based on literature (not directly measured)   

 

Table 1 Stoichiometric and Kinetic Parameter Values and Temperature Correction Factors 
Used in Model. 
Type  symbol Parameter Unit Value  Factor θa 

Kinetics 

μH Maximum specific growth rate of 
Heterotrophs d -1 6 1.072 

Ks Substrate half saturation for heterotrophs mg COD L -1  20 1.03 
fD’ 
bL 

Fraction of biomass contributing to debris 
Aerobic decay coefficient for heterotrophs 

g COD g COD-1 
d-1 

0.08 
0.63 

1 
1.03 

kh Hydrolysis rate coefficient d-1 2.2 1.03 
Kx Hydrolysis half saturation coefficient g COD g VSS -1 0.15 1 

Stoichiometries YH Yield of Heterotrophs on substrate  g COD g VSS -1 0.67 1 

Partitioning 
Coefficients 

iVSS,B COD/VSS ratio of biomass g COD g VSS -1 1.42 1 

iVSS,XI COD/VSS ratio of particulate inert g COD g VSS -1 1.5 1 

iVSS,Xs COD/VSS ratio of particulate substrate g COD g VSS -1 1.8 1 

iVSS,XD COD/VSS ratio of biomass debris  g COD g VSS -1 1.3 1 
a Temperature dependent parameter: P(T)=P20 θ(T-20). The referral temperature is 20 ℃.    
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Practical Campaign Strategies Evaluation  

Three averaging strategies, yearly-, quarterly- and monthly-, were applied for conversion of the 
measured fractionation data to determine model inputs, and then fed into the model to predict the 
bioreactor MLVSS concentration. This approach was used, not only for the period over which 
detailed wastewater fractionation was conducted (October 19, 2017 to October 17, 2018). To 
further evaluate the general applicability of the fractionation data and averaging strategies, the 
results from the three different averaging strategies were applied over the preceding four years of 
data and the resulting bioreactor MLVSS concentrations were calculated. In addition, each 
single-monthly-average fraction value was used to represent whole-year values to evaluate the 
performance of shorter period characterization campaigns.  

Potential Indicators of Days Bad for Campaign 

Using the yearly-average model for the training data set, individual days were divided into two 
categories - spikes (≥ 2 STD) and non-spikes. Differences in important plant conventional 
influent wastewater and operational features for these two data sets were investigated. Unpaired 
two sample t-tests were conducted over those features to detect statistically significant 
differences in mean values. Significantly different features can potentially serve as a flag for a 
bad campaign day.  

Campaign Size Evaluation 

Random sampling without replacement was conducted for different sample sizes from the year-
long campaign data to determine the effect of sample size on wastewater characteristic estimates. 
Estimates of COD fractions gained from different sample size were averaged and fed into the 
model for simulation. Fifty iterations were conducted for each sample size. Maximum and mean 
values for averages of year-long predicted MLVSS, RMSE, number of outliers and number of 
spikes were calculated for each sample size. 

 

RESULTS AND DISCUSSION 

Determination of Model Input Values Based on Measured Fractionation Data 

Raw secondary influent total COD and concentration fraction data for the year over which these 
data were collected are presented in Figure 1. The total COD concentration varied significantly 
(158 ± 40 mg/L, ranging from87.5 to 259 mg/L) throughout the year, primarily as a result of 
dilution during wet weather periods considering the GLWA WRRF is a combined sewage 
system. Particulate components appeared to be the most varied, covering a range of 27 - 217 
mg/L, while the soluble component fluctuated with a range of 21 – 104 mg/L. The colloidal 
component was generally smaller than the particulate and soluble components, and some 
negative values were recorded. This can arise because the colloidal component is calculated by 
difference between the measured glass fiber and 0.45 μm filter filtrates. Since any measurement 
is subject to random errors, a measured value for the 0.45 μm filtrate that is randomly higher than 
the true value and the measured value for glass fiber filtrate that is randomly lower than the true 
value can result in the calculation of a negative value. The uncertainties (standard deviations) for 
total COD and glass fiber filtered COD were 40 and 27 mg COD /L respectively, and the 
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maximum absolute value of colloidal component was 56 mg/L, mathematically supporting that 
the colloidal concentration was subject to measurement error. Analysis of the secondary influent 
wastewater characterization data collected by (Mehrotra 2018) during this same period suggested 
that the colloidal fraction is not statistically significant. Thus, it appears likely that the 
concentration of colloidal COD in the secondary influent (primary effluent) may be small 
enough that it cannot be accurately measured for this wastewater.  Inspection of the data 
presented in Figure 1 also suggests that colloidal COD is a small fraction of the total COD and 
that it can, perhaps, be neglected as long as it is incorporated into another COD fraction. 

 
Figure 1 Variation of Secondary Influent (Primary Effluent) COD Concentration Fractions Based on Filtration 
Procedure Applied Throughout the Campaign Year. 

 
Figure 2 COD Model Input Values as a Fraction of Total COD for the Campaign Year. Components: 
Biodegradable COD (Ss), slowly biodegradable COD (Xs), soluble inert COD (SI) and particulate inert COD (XI) 

Based on the observations above, a one-sample-t-test was conducted with a null hypothesis that 
the mean value of the colloidal COD is not equal to zero. With 95% confidence, the analysis 
failed to reject the null hypothesis (p-value = 0.13). In addition, ordinary least square linear 
regression analysis was conducted for the relationship between colloidal COD and total COD. 
Results showed that: (1) both slope and intercept were not significant; (2) The goodness of fit, R 
square, was 0.022 (3) the p-value of the ANOVA test comparing this linear fitting with no fitting 
was 0.32. These results all indicate that the colloidal component is sufficiently small that it 
cannot be measured for this wastewater with this technique. Consequently, this fraction was 
incorporate into particulate components as is the typical approach when ASM1 is applied. 
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Figure 2 summaries the reconciled input fractions for each day of the campaign year. There was 
no obvious pattern throughout the campaign year, and particulate COD (both biodegradable and 
non-biodegradable) varied more than soluble COD components. Table 1 provides both raw 
influent wastewater and primary effluent characteristics, as determined in this study, compared to 
recent literature values. The results for this wastewater are within the range of those obtained 
with other wastewaters, suggesting that it may be generally representative of domestic 
wastewater from a large metropolitan area. 

Comparison of Model Results with Actual Data 

The three different methods for averaging the fractionation data were evaluated using the 
campaign year as the training set, and the preceding four years as the validation set, as described 
above. Figure 3 compares predicted and measured MLVSS concentrations for the three methods 
for the training set, while Table 3 summarizes performance statistics for the training and 
validation data sets. While variations occur between model-predicted and actual MLVSS values, 
the model-predicted and measured MLVSS concentrations are generally of the same order of 
magnitude for all three averaging methods.  This is significant as the modeling approach does not 
include a mechanism to directly calibrate the model results to measured values.  Model 
stoichiometric and kinetic parameters are standard values taken from the literature, as discussed 
above and summarized in Table 1, and wastewater influent values are based on measured 
influent values, as described previously. As noted in Table 3, actual average MLVSS 
concentrations compare quite well with model values, irrespective of the averaging method used. 
Importantly, this suggests that the wastewater characterization method used, along with the use 
of relatively standard stoichiometric and kinetic coefficients, can lead to a reasonable model to 
begin with. 

Table 3 Simulation Results for the Three Different Fractionation Averaging Methods for 
the Training and Testing Data Sets.    

Set Average 
Method 

Mean STD RMSE > 1 
STD 

> 2 
STD 

>3 
STD mg 

VSS/L 
mg 

VSS/L 
mg 

VSS/L 
Training 
(2017/10/18-
2018/10/17) 
Size: 365 

Actual 1311.6 170.9     

Yearly  1419.3 216.5 229.4 38.9% 14.0% 4.4% 
Quarterly  1411.2 213.7 243.2 45.4% 15.6% 4.9% 
Monthly  1413.5 361.7 343.5 55.6% 27.4% 10.7% 

Testing 
(2013/10/18-
2017/10/17) 
Size: 1461 

Actual 1165.9 185.9     
Yearly  1119.7 281.0 256.3 44.0% 16.2% 3.0% 
Quarterly  1112.8 288.1 185.9 47.8% 17.2% 3.8% 
Monthly  1106.9 332.5 312.2 56.0% 24.4% 6.0% 

 

Visual inspection of the data presented in Figure 3 indicates a noticeable lack of fit from early 
February to late March. Model predictions consistently exceed actual values, and the deviations 
exceed the 10 % criteria often applied to indicate model lack of fit (Rieger 2013). Inspection of 
the individual data during this period indicated that this arose because of the nature of the model 
used. As indicated in Table 1, values for the COD/VSS for influent particulate inert material 
(iVSS,XI) and influent particulate substrate (iVSS,Xs) of 1.5 and 1.8 g COD g VSS-1 are used, 
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while the actual measured value for the influent particulate matter throughout the year was 1.9 ± 
0.7,  ranging from 0.7- 4.1g COD g VSS-1. The ratio for February to April was 2.5 ± 1.0.  In fact, 
use of higher values in the model for this period resulted in near elimination of this lack of fit. By 
adjusting iVSS,Xs from 1.8 to 2.3 and iVSS,XI from 1.5 to 2.0, the February spike was 
eliminated, but the resulting model underestimated the actual MLVSS for March. Overall, the 
mean predicted MLVSS was improved to 1361.4 mg/L, along with small improvements of 
RMSE and standard deviation (221.3 and 204.5 mg/L, less than 8 %). From a modeling 
perspective, the lack of fit during the February to March period did not occur due to variations in 
wastewater characteristics, but rather because of poor model structure as the COD to VSS ratio 
for these individual model components was not formulated as a wastewater characteristic but as a 
model parameter. Interestingly, the months of February and March represent a distinct operating 
period when influent flows tend to be somewhat higher and periods of precipitation occur (this is 
a combined system, as described above). This unusual operating period may explain why the 
COD to VSS ratio is higher during this period. The impact of unusual operating conditions is 
addressed in additional detail below. From a modeling perspective, a-priori knowledge 
concerning this failure of model structure would be required if the model is to be used to predict 
future performance. 

Table 4 Simulation Results Using Fractionation Data from an Individual Month to 
Represent the Whole Year.  

 

Month Mean STD RMSE > 1 
STD 

> 2 
STD 

>3 
STD Size mg VSS/L mg VSS/L mg VSS/L 

January 947.9 145.7 400.4 86.6% 60.3% 16.7% 5 
February 1915.9 292.2 656.2 96.2% 8.8% 58.6% 4 
March 1424.2 217.2 230.0 40.4% 12.9% 4.4% 3 
April 1068.5 163.2 297.8 72.3% 28.5% 4.7% 2 
May 1525.5 232.7 302.2 57.5% 24.1% 8.2% 2 
June 1441.8 219.9 242.7 40.8% 15.9% 5.8% 4 
July 1512.2 230.7 292.4 54.2% 22.5% 7.4% 4 
August 1651.8 251.9 409.7 81.1% 43.0% 20.0% 5 
September 1494.5 228.0 279.1 51.0% 20.5% 6.3% 3 
October 1337.4 204.0 195.8 34.2% 8.2% 2.5% 4 
November 1342.8 205.1 198.8 32.6% 8.2% 2.2% 4 
December 1304.2 199.5 194.1 35.6% 8.8% 1.6% 3 
Actual 1311.6 170.9     43 
Yearly 
Average 1361.3 326.0 294.4 53% 23% 8% 43 
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Figure 3 Simulation Results for the Three Different Fractionation Averaging Methods for the Training Data Set. (a) Yearly-
average; (b) Quarterly-average; (c) Monthly average.     

The results summarized in Table 4 address a different question, that is whether there were better 
and worse times to conduct fractionation studies. It differs from the monthly analysis 
summarized in Table 3 and illustrated in Figure 3 in that the fractionation results for a single 
month are used to model the entire year. The results indicate that some time periods are better 
than others. 

The poorest results occur when characterization data from February is used, as might be 
expected from the results presented immediately above. The difference between the mean 
predicted and actual MLVSS increases to 46 % of the actual value, the RMSE is more than triple 
the value for yearly average results presented in Table 3, the percentage of predictions exceeding 
one STD increased to 96.2 %, and 58.6 % exceeded three STD. On the other hand, the 
fractionation data from certain months, such as March and October to December, generally 
performed better in terms of mean values, RMSE, and the percentage exceeding two and three 
STD (spikes and outliers) as summarized in Table 3. Note that the number of fractionation 
measurements was not the main contributor to improved performance, as larger sample size did 
not guarantee good performance (August and February) and smaller sample size did not diminish 
performance (April). It is noted that the period of October to December generally represents a 
period of lower plant influent flow. 
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A further analysis of the potential reasons for deviations was conducted by evaluation of the 
difference in operating conductions on days where spikes (difference between modeled and 
actual MLVSS ≥ 2 STD) occurred, compared to the operating conditions for days when spikes 
did not occur. As shown in Figure 5, the hypothesis test results indicate that, within a 95% 
interval, days with spikes tended to occur on days with lower SRT, MLSS, higher secondary 
influent BOD5, COD, TSS and VSS concentration, and higher secondary effluent TSS 
concentration.  In short, efforts should be made to conduct fractionation campaigns during 
periods of relatively normal influent flow, loading, and operation, and results from periods where 
these factors are somewhat abnormal should be carefully screened and reviewed. 

 
Figure 4 Boxplots of Potential Indicators in Spike Days and Non-Spike Days. These indicators were chosen based on 95% 
confidence interval of unpaired two sample t-test.  

Impacts of Sample Size on Wastewater Characteristic Estimation and Model Performance 

Increased sample size can improve estimated fractionation, but with diminished results, as 
presented in Figure 4. Fifty iterations were implemented for each sample size, with the 
designated characterization records randomly pooled without replacement. Averaged fractions 
were fed into the model for simulation, and performance was evaluated. To minimize the error 
introduced by chance in sampling, both the maximum and average values of the model 
performance statistics among the 50 iterations were calculated. Average values reflect the overall 
performance of each sample size, while maximum values indicate the robustness, meaning that 
the result is not significantly influence by individual characterizations. As indicated in Figure 4, 
there is a point of diminishing return. As expected, the desired “elbow point” is controlled by the 
maximum criteria to achieve robust estimates of wastewater characteristics, making 20 the 
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desired sample size in this instance. A preliminary analysis regressing the inert particulate 
fraction on the total COD with bootstrap sampling reached a similar conclusion (data not 
shown). 

 
Figure 5 Elbow plots to Determine Sample Size. Each Sample Size was Iterated 50 Times, and then Maximum and Mean Values 
for each Model Assessment Parameter were Extracted to Represent each Sample Size. The Model Evaluation Parameters used 
Include Maximum and Average Values for: (a)Mean of predicted MLVSS; (b) RMSE of predicted MLVSS; (c) Days with different 
deviations. 

Implications for Wastewater Characterization Campaigns 

These results provide guidance on the number of individual measurements that can result in a 
robust assessment of wastewater characteristics. The analysis summarized in Figure 4 suggests 
that around 20 measurements represent a reasonable balance between achieving a robust 
assessment without an excessive number of measurements. The results presented in Table 3 also 
support the conclusion that “more is better” (yearly average compared to quarterly and monthly) 
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when assessing wastewater characteristics and their impact on model performance. This result 
conflicts, however, with the those presented in Table 4 which indicated that even a small number 
of measurements conducted at “the right time” (March and October to December in this case) 
can result in better characterization of the wastewater relative to model performance. This 
presents a conundrum for planning wastewater characterization campaigns, as it is not possible to 
know, a-priori, what the “right time” is. Certainly, periods that are recognized to generally 
represent unusual conditions can be avoided, but it may not be possible to predict the ideal time. 
This suggests that an adaptive approach to wastewater characterization may be needed. It may 
consist of multiple sampling events, each of relatively short duration, with the results carefully 
evaluated after each event for consistency in model predictions as well as the occurrence of 
unusual influent or operating conditions. Sampling periods continue until a consistent set of 
results is achieved. Using this approach, sampling can be terminated when a sufficient number of 
measurements are obtained during periods of normal operation so that a robust assessment of 
wastewater characteristics is achieved. Issues related to model structure, as occurred in this 
instance during February and March of 2018, can also be identified with this approach and 
addressed appropriately given the objective of the modeling exercise. Use of this approach 
makes it unnecessary to specify initially the number of measurements required to achieve a 
robust assessment of wastewater characteristics as the methodology, itself, will determine this. A 
robust budget is needed to account for unforeseen conditions. Given the significant economic 
impact of poor wastewater characterization in many instances, unnecessarily limiting the 
wastewater characterization budget may not be a wise use of funds as the economic impact of 
poor decisions may be orders of magnitude greater than the cost of additional testing. 

The system considered and model application used in this work represents perhaps one of the 
simplest, but one with potentially significant economic impacts. Accurate prediction of the 
MLVSS concentration translates directly into the required bioreactor and secondary clarifier 
sizes, which represents a major capital expense for any suspended growth biological treatment 
system. The colloidal organic matter fraction of the biological process influent wastewater was 
found to be negligible in this instance, and the dissolved fraction could be characterized based on 
membrane filtration rather than flocculation and filtration. Note that GLWA serves a large and 
diverse metropolitan area, and that a significant portion of the collection system consists of 
combined sewers, leading to significant variations in influent flows, both seasonal and daily, and 
significant temperature variations given its location in the Northern U.S. In spite of these factors, 
it was found that one set of wastewater characteristics applied over the entire year. Thus, while 
the precise numerical results determined for this application may not generally apply, the 
adaptive approach to wastewater characterization and model calibration described here may be 
more generally applicable. 

 

CONCLUSIONS 

An extended wastewater fractionation study conducted at the GLWA WRRF provided the basis 
to evaluate alternative wastewater characterization campaign designs. An ideal campaign results 
in a robust characterization of the wastewater while managing the time and resources required to 
achieve this result. Wastewater characterization must, of course, be viewed in the context of the 
objectives of the modeling exercise and the potential impacts of improper model development. 
The following conclusions can be offered based on this study: 
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1. The characteristics of this wastewater originating from a large and diverse 
metropolitan area, as assessed based on predicted versus actual bioreactor MLVSS 
concentration, did not vary on a seasonal basis. This occurred in spite of significant 
daily and seasonal influent wastewater flows and seasonal temperature variations due 
to the fact that the collection system included a substantial combined sewer 
component. 

2. Sampling during periods of normal and stable plant operation results in the most 
reliable estimates of wastewater characteristics. Increasing the number of samples can 
help to partially overcome the adverse impacts on sampling results resulting from 
occasional periods of unusual plant operation, but the best results will be obtained by 
avoiding, when possible, sampling during unusual operating periods. 

3. For this application, around 20 samples randomly distributed over an annual cycle 
was found to represents a good trade-off between further increasing the number of 
samples and the gain in precision in the estimation of wastewater characteristics. 

4. An adaptive approach to wastewater characteristics measurement consisting of 
multiple measurement campaigns, each of limited duration, may provide the best 
results. Sufficient resources need to be devoted to the campaign to allow for sufficient 
sampling events to ensure that a reliable and robust assessment of wastewater 
characteristics is achieved. 

5. Attention should be paid to the potential for periods of poor model structure, 
including numerical values of key parameters, when assessing results. Some 
redundancy in measured parameters (COD, BOD5, TSS, VSS) can facilitate 
identification of such periods. 
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